

Shri Vile Parle Kelavani Mandal's **DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING** (Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Shri Vile Parle Kelavani Mandal's

Dwarkadas J. Sanghvi College of Engineering

(Autonomous College Affiliated to the University of Mumbai)

Scheme and detailed Syllabus (DJ19)

of

Honours Degree Program

in

Electric Vehicles

Revision: 1 (2022)

With effect from the Academic Year: 2022-2023

Shri Vile Parle Kelavani Mandal's **DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING** (Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Proposed scheme for Honours in Electric Vehicles (Academic Year 2022-2023)

Sr.	Course Code Course	Teaching Scheme (hrs.)				Continuous Assessment (A) (marks)			Semester End Assessment (B) (marks)				(A+B)	Total		
		Couse	Th	Р	т	Credits	Th	T/W	Total CA (A)	Th/ Cb	0	Р	0 & P	Total SEA (B)	(A+D) Credi	Credits
Sem V																
1	DJ19MEHN1C1	Fundamentals of Electric Vehicles	4			4	25		25	75				75	100	4
		Sem VI														
2	DJ19MEHN1C2	Electric drives and controls	4			4	25		25	75				75	100	4
3	DJ19MEHN1L1	Electric Vehicle Laboratory 1		2		1		25	25				25	25	50	1
		Sem VII														
4	DJ19MEHN1C3	Energy source management	4			4	25		25	75				75	100	4
5	DJ19MEHN1L2	Electric Vehicle Laboratory 2		2		1		25	25	-			25	25	50	1
	Sem VIII															
6	DJ19MEHN1C4	Electric Vehicle System Design	4			4	25		25	75				75	100	4
		Total	16	4	0	18	100	25	125	300	0	0	25	325	500	18

Honors in Electric Vehicles

Program: Mechanical Engineering

Course: Fundamentals of Electric Vehicles (DJ19MEHN1C1)

Pre-requisite:

- 1. Basic of electronics and electrical engineering
- 2. Fundamentals of physics and engineering mechanics

Objectives:

- 1. To study different automotive components and subsystems
- 2. To explore the transition of automotive domain from Internal Combustion Engine to electric vehicles

Outcomes: On completion of the course, the learner will be able to:

- 1 To explain the basic of Electric vehicles and its major parts.
- 2. To define the functionality and working principles of different types of Automotive Powertrains
- 3. To illustrate the working of various automotive transmission systems
- 4. To explain vehicle fundamentals of various subsystem.
- 5. To illustrate the working of motors and conversions.

6. To identify and illustrate the various hybrid electric powertrains and their different modes of operations

Electr	Electric Vehicles (DJ19MEHN1C1)					
Unit	Description	Duration				
1	Electric Vehicles History, Basics of Electric Vehicles ,Components of Electric Vehicle, General Layout of EV, EV classification : Battery Electric Vehicles (BEVs), Fuel-Cell Electric Vehicles (FCEVs) Comparison with Internal Combustion Engine: Technology, Advantages & Disadvantages of EV, National Policy for adoption of EVs, Overview of Tesla car.	10				
2	Vehicle Mechanics History of Vehicle Development, General Configuration of Automobile, Body and Chassis Fundamentals: General Packaging, Types of Structural System, Backbone Construction; Body and Chassis Materials. Automotive Powertrain Mechanical, Suspensions system, Steering System, NVH, Control System Integration and Implementation. Front-Wheel Drive (FWD) Powertrains, Rear-Wheel Drive Powertrains (RWD), Multi-Wheel Drive Powertrains (AWD and 4WD).	10				
3	Transmission Systems Transmission gears, Manual Transmission (MT), Automatic Transmission (AT), Automated Manual Transmissions (AMT) and Continuously Variable Transmissions (CVT); Manual Transmissions Powertrain Layout and Manual Transmission Structure, Power Flows and Gear Ratios, Manual Transmission Clutch and its structure. Drivetrain and Differential.	10				

Semester: V

Shri Vile Parle Kelavani Mandal's

WARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

4	Vehicle fundamentals	10
	Vehicle resistance, Types: Rolling Resistance, grading resistance, Aerodynamic drag	
	vehicle performance, Calculating The Acceleration Force, maximum speed, Finding The	
	Total Tractive Effort, Torque Required On The Drive Wheel, Transmission: Differential,	
	clutch &gear box, Braking performance.	
5	Conversions and motors	6
	Introduction of DC-DC, AC-AC, AC-DC, DC-AC, four-quadrant operation, Driver circuits.	
	Principle and working of DC motor, Characteristics and Types of DC Motors-	
	Overview (Speed torque characteristics) of Permanent Magnet motor, BLDC Motor,	
	Induction motor. Comparison of all motors.	
6	Hybrid Powertrain: Series HEVs, Parallel HEVs, Series–Parallel HEVs, Complex HEVs,	6
	Operating Modes, Degree of Hybridization, Comparison of HEVs, Plug-in Hybrid Electric	
	Vehicles (PHEVs) Real Life examples of HEVs, compare and contrast the performance of	
	ICE vehicles, HEVs and EVs.	
	Total	52

Books Recommended:

Text books:

1. Vehicle Powertrain Systems by Behrooz Mashadi and David Crolla, Wiley, 2012

2. Automotive Aerodynamics by Joseph Katz, Wiley, 2016

3. Automotive Chassis Engineering, by David C. Barton and John D. Fieldhouse, Springer, 2018

4. Automotive Engineering Powertrain, Chassis System and Vehicle Body Edited by David A. Crolla, Elsevier,2009

5. Automotive Power Transmission Systems by Yi Zhang and Chris Mi, Wiley, 2018

6. Linear Electric Machines, Drives, and MAGLEVs Handbook, by Ion Boldea, CRC Press. 2013

7. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles by Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, and Ali Emadi, CRC Press 2005

8. Electric Vehicle Technology Explained by James Larminie and John Lowry, John Wiley, 2003

9. Electric and Hybrid Vehicles- Design Fundamentals by Iqbal Husain, CRC Press, 2005

Reference Books:

1. Encyclopaedia of Automotive Engineering edited by David Crolla et al, Wiley, 2014

 Design and Control of Automotive Propulsion Systems by Zongxuan Sun and Guoming Zhu, CRC Press, 2015

3. The Automotive Transmission Book by Robert Fischer, Ferit Küçükay, Gunter Jürgens, Rolf Najork, and Burkhard Pollak, Springer, 2015

4. Noise and Vibration Control in Automotive Bodies by Jian Pang, Wiley, 2019

Continuous Assessment (A):

Course	Assessment Tools	Marks	Time (hrs.)	
	One Term test (based on 40 % syllabus)	25 each	1	
Theory	Second Term test (next 40 % syllabus) / presentation / assignment / course project / group discussion / any other.	(Avg.25)		
Audit course			as applicable	
Laboratory				
Tutorial				
Laboratory &Tutorial	Performance in the laboratory and tutorial.	25		

The final certification and acceptance of term work will be subject to satisfactory performance upon fulfilling minimum passing criteria in the term work / completion of audit course.

Semester End Assessment (B):

Course	Assessment Tools	Marks	Time (hrs.)	
Theory /	Written paper based on the entire syllabus.			
* Computer based	* Computer based assessment in the college premises.	75	3	
Oral	Questions based on the entire syllabus.		as applicable	
Practical	ical Performance of the practical assigned during the examination and the output / results obtained.		2	
Oral & Practical	Project based courses - Performance of the practical assigned during the examination and the output / results obtained. Based on the practical performed during the examination and on the entire syllabus.		2	